If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-100=35
We move all terms to the left:
3x^2-100-(35)=0
We add all the numbers together, and all the variables
3x^2-135=0
a = 3; b = 0; c = -135;
Δ = b2-4ac
Δ = 02-4·3·(-135)
Δ = 1620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1620}=\sqrt{324*5}=\sqrt{324}*\sqrt{5}=18\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{5}}{2*3}=\frac{0-18\sqrt{5}}{6} =-\frac{18\sqrt{5}}{6} =-3\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{5}}{2*3}=\frac{0+18\sqrt{5}}{6} =\frac{18\sqrt{5}}{6} =3\sqrt{5} $
| y=3*12-3*4+8 | | |4x-2|=18 | | 1/6y+1/6(y+12)-2=1/3 | | (x+4)^2=16 | | z/5+3=-5 | | 34x+35x-100=110 | | 9n+4n=6 | | 15x-150+20x=35x+120 | | 6a-11=33 | | 15x-2=27x+5 | | 2(x+2)^2=40 | | y=5(12)-3(4)+8 | | 2b/18-9/18=5/18 | | 10-3x=-2(x-4 | | -43+13x=120 | | 5+3x2-6=10 | | +m=-16 | | 1316x=9 | | 6x+3x-11+74=180 | | -2p+9=37 | | 3/8=2/3(7/8-4x)-5/8 | | p-16=4 | | -29=2(u+8)-7u | | 13.54+0.12(x+1)=14.29+0.11 | | 7c=29 | | -2=z | | 6(t-1=9(t-4) | | 5b/6=10 | | 2x+20=× | | 6v-1=6v-4 | | X/2-2=x/6+4 | | 33x-36=-100x+83 |